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ABSTRACT

Support vector data description (SVDD) inspires us in data analysis, adversarial training, and machine 
unlearning. However, collecting support vectors requires pricey computation, while the alternative 
boundary selection with O(N2) is still a challenge. The authors propose an indispensable edge pattern 
selection method (IEPS) for data description with direct SVDD model building. IEPS suggests a 
double local analysis to select the global edge patterns. Edge patterns belong to a subset of the target 
problem of SVDD and its variants, and neighbor analysis becomes pivotal. While an excessive 
number of participating data result in redundant computations, an insufficient number may impede 
data separability or compromise the model’s quality. Consequently, a data-adaptive sampling strategy 
has been devised to ascertain an optimal ratio of retained data for edge pattern selection. Extensive 
experiments indicate that IEPS keeps indispensable edge patterns for data description while reducing 
the interference in the norm vector generation to guarantee the effectiveness for clustering analysis.
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INTRODUCTION

Inspired by support vector classifier, support vector data description (SVDD) (Tax & Duin, 1999) 
characterizes a data set by obtaining the spherically shaped boundary. Through a model built to 
describe the target data set, it benefits a wide range of applications, such as image description 
(Aslani & Seipel, 2021), novelty discovery (Hu et al., 2023), adversarial training (C. Chen et al., 
2023), and machine unlearning (M. Chen et al., 2023). However, in collecting support vectors (SVs) 
for data description, the conventional solution conducts model training through solving a quadratic 
programming optimization problem. It poses a computational complexity of O(N3) where N is the 
number of data points. Evidently, pricey computations may significantly degrade SVDD’s applicability.

Let   be a data set with N data points { , , , }x x x
1 2



N
 where x

i
d i NÎ Î ( [ , ])1  in data space. 

The pricey model training is generally caused by solving a quadratic programming problem in terms 
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of iterative analysis on a N N´  kernel matrix. Furthermore, the number of iterative analysis is 
usually large and uncertain, yet a great value for the final coefficient vector b exacerbates the practical 
time-cost. Efficient solver for the quadratic programming problem is the major preference for 
improvement, such as the solver of dual coordinate descent (Y. Ping et al., 2017). However, the 
computational complexity falling in the range of O(N2) and O(N3) upon the specific case is still pricey 
(Arslan et al., 2022). Another intuitive way of improvement is to select the most representative subset 
of  . However, few works in the literature focus on the subset’s representativeness or purity strongly 
related to SVDD. They frequently select a subset on the basis of random sampling, data geometry 
analysis, and neighborhood relationships. For instance, Kim et al. (2015) define a sample rate 
r r( )0 1< <  to regulate the randomly selected rN  data points during model training, while Jung 
et al. (2010) and Gornitz et al. (2018) leverage data geometry information by incorporating k-means 
to partition   into K subsets for local model training and subsequent global mergence. However, 
these data points employed for model training, whether obtained through random sampling or cluster-
based geometry analysis, may not accurately capture the true distribution of  . Random sampling 
introduces changes in the densities of all the retained data groups that significantly impacts data 
separability. The circle-like pattern hypothesis employed in subsets collection for local model training 
may exacerbate the adverse effects of irregular cluster shapes. Despite achieving substantial efficiency 
improvements, these methods often result in highly unstable accuracies. As the superset of support 
vectors (SVs) (Y. Ping et al. 2015), boundary generally makes an equivalent contribution to the 
construction of demarcation hyperplanes (Chen et al., 2023). On the basis of neighborhood 
relationships, Aslani and Seipel (2021) introduce locality-sensitive hashing (LSH) to gather instances 
near decision boundaries and eliminate nonessential ones. However, it retains many inners that may 
be more suitable for constructing a classifier for multi-classes problems rather than describing clusters 
with arbitrary shapes. Furthermore, Y. Ping et al. (2015) and Y. Ping et al. (2019) utilize the boundary 
to directly reformulate the dual problem. Despite achieving stable performance, the boundary selection 
becomes computationally expensive with a large value of N.

As depicted by Figure 1, boundary consists of edge and border (Li & Maguire, 2011), which 
extend beyond the essential requirement for cluster discovery and description. Specifically, 
for unsupervised learning, boundary is effectively profiled by edge patterns alone since no 
shared borders should be considered. The border refers to the connection between two nearest 
neighboring clusters. Simultaneously, both of the kernelized SVDD (Cevikalp et al., 2020) and 
the convex decomposition strategy (Y. Ping et al., 2020) suggest that only a subset of samples on 
the decomposed convex hulls is necessary for accurate data description. Thus, an optimal edge 
pattern selection method should preserve cluster shapes, excluding inners and border patterns, 
and eliminate redundant instances even though they reside on edges, as they contribute nothing in 
additional contributions to cluster description.

Toward this requirement, our critical observations based on the principle of SVDD encompass 
three aspects: 1) Inners are exclusive to each cluster, as they can also be considered as outliers of 
other clusters; 2) Border patterns are solely shared by any two connected clusters or prototypes, such 
as convex hulls in (Y. Ping et al., 2019), and this sharing is independent of the clustering method; 3) 
Edge patterns represent the only type of data points shared by all clusters, regardless of the chosen 
clustering method. Motivated by these insights, we propose an indispensable edge pattern selection 
method (IEPS) with data adaptive sampling and double local analysis strategies. IEPS maximizes 
the utility of the shrinkable boundary selection algorithm (SBS) (Y. Ping et al., 2019), p-stable 
distributions based LSH (pdLSH) (Datar et al., 2004), and k-means++ (Arthur & Vassilvitskii, 2007). 
The main contributions lie in:

(1) 	 We propose an edge pattern selection strategy with double local analysis (EPSDLA) based on two 
rounds of data partitioning using k-means++. The inherent instability of k-means++ is leveraged 
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as an advantage, resulting in deliberately inconsistent clusters. Edge patterns from distinct local 
clusters are subsequently collected separately to derive the global edge patterns—those shared 
by both partitions. Despite encountering numerous challenges, the simplicity, efficiency, and 
instability of k-means++ are well integrated.

(2) 	 To eliminate redundant instances along edges and prevent an undue inhibition to edge patterns, 
which potentially affect future connectivity analysis, we introduce a data-adaptive sampling 
strategy (DASS) based on pdLSH to assess data separability and recommends a data-related 
sample rate r  for data reduction, ensuring the preservation of data patterns for EPSDLA. Given 
r , the maximin and random sampling (MMRS) can confidently be employed as a preprocessing 
step for large-scale data analysis.

(3) 	 By integrating the aforementioned designs, IEPS is proposed to enhance the understanding of 
SVDD by efficiently collecting essential edge patterns. These patterns are crucial for subsequent 
hypersphere and support function construction, as well as for cluster analysis. To accommodate 
flexible parameter evaluation, IEPS collects global edge patterns from the retained subset of  , 
ensuring that this process does not compromise the effectiveness of their convergence directions. 
Experimental results affirm its substantial efficiency improvement compared to the well-known 
border-edge pattern selection method (BEPS) (Li & Maguire, 2011). Utilizing the edge patterns 
collected by IEPS as input, both the fast and scalable support vector clustering (FSSVC) (Y. Ping 
et al. 2015) and the improved boundary support vector clustering (IBSVC) (Li et al. 2022) perform 
well in terms of accuracy.

The remainder is organized as follows: Section 2 (Preliminaries) briefly describes SVDD, 
k-means++, SBS, MMRS, and pdLSH. In Section 3 (The Proposed IEPS Method), we present 
EPSDLA, DASS, and then the architecture of IEPS as well as its full implementation. Section 4 
(Performance Analysis) gives performance analysis through a series of experiments. Finally, the 
conclusions are drawn in the last section (Conclusion), as well as the future works to be investigated.

PRELIMINARIES

Support Vector Data Description
Given a nonlinear function Φ()⋅  to map data points into the feature space, SVDD tries to find a 
minimum sphere with centers a  and radius R which contains most of the data points. Its objective 
function can be formulated by:

min

. . || ( ) ||

, ,R i
i

i i

i
R C

s t x R

α ξ ξ

α ξ

2

2 2

+

− ≤ +

∑
Φ

	 (1)

where x
i
 is a slack variable, and C gives the trade-off between simplicity and the number of errors. 

Following Tax and Duin (1999), the dual problem of Eq. (1) can be formulated by

min ( , )

, , , , ,
,

b b b

b b
j i
i j

j i j

j
j

j

K

C i j N

∑
∑ = ≤ ≤ = …

x x

s.t.   1 0 1
	 (2)
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By optimizing Eq.(2) with Gaussian kernelK e
i j

q i j( , )
|| ||x x x x= − − 2

, the objective trained support function 
can be formulated by the squared radial distance of the image of x  from the sphere center a  given by:

f K K
j

j
j i

i j
j i j

( ) ( , ) ( , ),
,

x x x x x= − +∑ ∑1 2 b b b 	 (3)

where:

α β=∑ j
j

j
Φ( )x 	 (4)

Apparently, the center a  is a linear combination of the mapped data points with weight factors
b
j
. Since only a part of data points has b

j
> 0 , not all the data points contribute to the center 

construction that is similar to the construction of cluster centers in k-means. Meanwhile, only a small 
set of data points have 0 < <b

i
C  which are SVs locating on the boundary. So, only SVs are essential 

for describing the sphere, as well as shapes and connection relationship of clusters.
Various labeling strategies have been introduced to complement SVDD, resulting in a series of 

support vector clustering (SVC) approaches that enhance research and applications in unsupervised 
learning, such as the earliest SVDD plus a complete graph strategy (CG) (Ben-Hur et al., 2001), 
the faster and reformulated SVC (FRSVC) combining a solver reformulated SVDD and convex 
decomposed cluster labeling strategy (Y. Ping et al., 2017), and the Voronoi cell-based clustering 
(VCC) (Kim et al., 2015) integrating SVDD and a Voronoi cell-based labeling strategy.

K-Means++

Let C c c c= { , , , }
1 2



K
 be the expected K cluster centers of  . Let Z z

iv N K
= ×[ ] , where z

iv
Î { , }0 1  

indicates whether x
i
 belongs to the v -th cluster and v K= 1, , . Thus, the objective function of 

k-means can be formulated by:

min || ||
,Z C iv

v

K

i

N

i v
z x c

==
∑∑ −

11

2 	 (5)

To reach the objective, k-means++ chooses the first center c
1
 uniformly at random from  , 

and repeatedly chooses the next center c x
i
= ′ ∈   with probability D D( ) ( )/′

∈∑x x
x

2 2


 until a 

total of K centers are initialized. Here, D( )x  is the shortest distance from x  to the closest center we 
have already chosen. Then, the solver of k-means++ iteratively updates the cluster centers and 
memberships formulated by the following equations, respectively.

c
z x

z

z
if x c x c

v

iv
i

N

ij

iv
i

N

iv
i v v K i v

=

=
− = −

=

=

≤ ≤

∑
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1

1
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1
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0 otherwise
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





	 (6)



Journal of Cases on Information Technology
Volume 26 • Issue 1

5

Here, || ||x c
i v
-  is the Euclidean distance between x

i
 and c

v
. Apparently, K initial cluster 

centers are critical for the iterative analysis, which will end with K final clusters. So K is the prior 
knowledge, and the initial centers selected are the root of its unstable performance. Furthermore, the 
employed Euclidean distance leads to the circle-like pattern description.

Shrinkable Boundary Selection
As shown in Figure 1, cluster boundary consists of edge and border (Li & Maguire, 2011). A 
cluster has independent edges, while any two clusters with overlapping region share the same 
border. We usually consider the latter as two components of a cluster. Even though border patterns 
are important for connectivity analysis, it is unnecessary to extract them for SVDD, in which 
edge patterns are the most informative data points for accurate data description. Derived from 
BEPS, for a given point x

i
 with its k

e
 nearest neighbors x

j
j k( , , , )= …1 2

e
, SBS (Y. Ping et al., 

2019) includes the follow four phases.

(1) 	 Setting two thresholds g
l
 and g

u
 ( )0 1< < ≤g g

l u
 to respectively control the curvature and 

the shrinkage degree of the surface above.
(2) 	 Generating the normal vector n u

i ijj

k
=

=∑ 1

e , where u x x
ij j i
= −

(3) 	 Calculating l
k

g
i

j

k

i
T

ij
= ⋅

=
∑1

1e

e

( )n u , where ()×  means inner product and the function g x( )  returns 

1 if x ³ 0 ; otherwise it returns 0.
(4) 	 Cluster boundary identification. If l

i l u
Î [ , ]g g , then x

i
 is considered as one of the boundary 

points. Generally, the closer a data point is to the cluster center, the more balance the surrounding 
neighbors will be. Therefore, we can reduce g

u
 to shrink the extracted boundary.

Figure 1. Edge patterns and border
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Maximin and Random Sampling
Toward accurately portraying the distribution of   with a portion of data points, MMRS (Rathore 
et al., 2019) samples n N= ∈r r( ( , ))0 1  data points through the following three steps:

Step 1: 	 Collect N
g

maximin data points. MMRS identifies the K maximin data points in  , which 
are furthest from each other. Starting with a randomly chosen data point, it selects the second 
maximin data point that is the furthest from the initial point with respect to a chosen distance 
measure. The third data point chosen should have the maximum distance from the first two, and 
this process continues until K maximin samples are collected.

Step 2: 	 Group each data sample with its nearest maximin data point. By grouping each data point 
in   with its nearest maximin data point, we get N

g
 groups of data { }G

i i

N

=1
g  associating to N

g

maximin data points, respectively.
Step 3: 	 Randomly select data near each maximin data point to obtain n data points. The final data 


s

 of size n is built by selecting random data points from each group G i N
i
( , , )= …1

g
. The 

number of data points n
i
 collected from G

i
 is proportional to the number of data points in G

i
, 

i.e., n n G N
i i
= ×


| | / .

P-Stable Distributions Based LSH
Stable distributions are defined as limits of normalized sums of independent identically distributed 
variables, such as Gaussian distribution. Following Datar et al. (2004), a distribution  over R  is 
called p-stable, if the random variable x a

i
i

iå  has the same distribution as the variable ( | | ) /

i
i
p px aå 1  

(i.e., || ||x
p
a ), where p ³ 0 , { , , }x x

d1
¼  are d real numbers, { , , }a a

d1
¼  are i.i.d variables with 

distribution  , and a  is a random variable with distribution  .
Let a  of dimension d be ( , , )a a

d1
¼ , x  of dimension d be ( , , )x x

d1
¼ , a small collection of 

the dot product ( )a × x  corresponding to different a ’s can be used to estimate || ||x
p

. When x  is 
a linear composition x x

1 2
- , then a specific distance measure of || ||x x

1 2
-

p
 can be analyzed in 

a projected space of a ⋅ −( )x x
1 2

. Since ( )a × x  projects x  to a real line, if we ``cho’’’ the real 
line into equi-width segments of appropriate size r, then the more close of x

1
 and x

2
 will have 

greater collision probability, i.e., a × x
1
and a × x

2
 falling into the same segment. Therefore, we can 

define a group of locality-preserving hash functions g h h
M

( ) { ( ), , ( )}x x x=
1

  in which 
h
i

d( ) :x R N®  is formulated by:

h
b

ri
i i( )x
a x

=
⋅ +














	 (7)

For i M= 1 2, , , , random a
i
 is a d-dimensional vector with entries chosen independently from 

a p-stable distribution (e.g.,  ( , )0 1 ), and b is a real number chosen uniformly from the range [ , ]0 r . 
Thus, g( )x  partitions the input space into buckets whose id is the concatenation of projected values 
by M locality-preserving hash functions. To increase the collision probability of neighbors and improve 
discriminative capability of hashing, a set of hash function families rather than one hash function 
family is frequently constructed (Aslani & Seipel, 2021).
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THE PROPOSED IEPS METHOD

Edge Pattern Selection With Double Local Analysis

From Section 2.3 (Shrinkable Boundary Selection), the k
e
 nearest neighboring data points are critical 

factors for determining whether x
i
 is an edge pattern. In SBS, evaluating each data point involves 

one round of distance measurement with a time complexity of O(N) as no data point except x
i
 can 

be avoided. However, pdLSH has demonstrated that the closer of x
j
 and x

i
 will result in a higher 

collision probability of falling into the same segment if we ``cho’’’ the projected space into equi-
width segments. This property makes it suitable for partitioning the data space using k-means++ 
which is known for creating K circle-like subspaces.

Figure 2a illustrates the conventional edge pattern selection strategy such as SBS, where the 
outermost dot-and-dash line represents the collected edge patterns. Since each edge pattern is 
determined through global analysis, it is equivalent to chopping the data space into single subspace 
with one center C. Consequently, every data point is projected into the same subspace and is considered 
as a candidate for the k

e
 nearest neighbors of x

i
. In fact, a large proportion of redundant computations 

happens since N k

e
. After introducing data partition, SBS can focus on the specific subspace of 

x
i
. As depicted in Figure 2b, we perform data partitioning using k-means++ and set K = 2  for 
N K k/ 

e
, then edge patterns can be separately collected based on the nearest neighbor analysis 

in two subspaces C
11

 and C
12

. Here, blue dot-and-dash lines denote the collected edge patterns. 

Theoretically, x x
3 4

is the border shared by C
11

 and C
12

, while in practice, we observe edge patterns 

surrounding x x
3 4

 that may belong to either C
11

 and C
12

 due to the data partition. Therefore, edges 
of the two subspaces can be formulated by:

Edge

Edge

( ) { , ,, }

( ) { , , }

C

C

11 1 3 4 3 4

12 3 4 3

1

6 6 4

=

=


x x x x x x

x x x x x x

 

 







	 (8)

Similarly, when K is set to 5, we get five subspaces C
21

, C
22

, C
23

, C
24

 and C
25

. The corresponding 
edges can be expressed by red dotted lines, i.e.:

Edge

Edge

Ed

( ) { , , },

( ) { , , },

C

C

21 1 3 1 2 2 3

22 1 4 1 2 2 4

=

=

x x x x x x

x x x x x x

�

�

gge

Edge

( ) { , , , },

( ) { , , }

C

C

23 2 3 3 5 5 4 4 2

24 6 6 5 5 33

=

=

x x x x x x x x

x x x x x x� ,,

( ) { , , }.EdgeC
25 4 4 5 5 66
=









 x x x x x x�

	 (9)

Apparently, the common elements of Eq.(8) and Eq.(9) are:

Edge Edge( ) ( ) { , ,C C C C C C C
11 12 21 22 23 24 25 1 3 14 3 6
∪ ∩ ∪ ∪ ∪ ∪ = x x x x x x  ,, },x x

6 4

 	 (10)
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which well coincides with edges collected without data partition in Figure 2a. Consequently, the 
proposed EPSDLA strategy is inspired by the observation and an intuitive expectation: The collection 
of edge patterns in the whole data space can be alternatively done by extracting the common elements 
between edge patterns separately collected in two sets of subspaces partitioned by k-means++ (or 
any other data grouping/clustering method) with different K values.

Based on the preceding analysis, the proposed EPSDLA strategy is succinctly described by 
Algorithm 1. Given two different cluster numbers K

1
 and K

2
, EPSDLA invokes k-means++ twice 

to partition   into two sets of subspaces, i.e., X
K1 11 12 1

= { , , , }    and X
K2 21 22 2

= { , , , }   . 

Then, a double local analysis involving the typical SBS on all the subspaces of X
1
 and X

2
, denoted 

as SBS-SubSpace in lines 4-9, is employed to collect all the edge patterns 
e11

1

ii

K

=
 and 

e21

2

jj

K

=
. 

Finally, the expected edge patterns 
e

 in global can be effortlessly extracted through an intersection 
operation in line 11. As all critical phases, except line 11 in Algorithm 1, involve double invocations 
(e.g., lines 2 and 3, 4-6, and 7-9), this strategy is termed a double edge pattern selection strategy. 
Notably, these phases can be executed independently to fulfill parallel processing requirements.

Figure 2. Principle of edge pattern selection without data partition and after data partition by k-means++ with different k values

Algorithm 1. Description of EPSDLA strategy
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The complete description of SBS-SubSpace is outlined in Algorithm 2. In line with a consistent 
standard for data description, k

e
 is a global constant for edge pattern analysis across all the subspaces. 

To expedite the model construction of SVDD, the norm vector n
i
 for each selected edge pattern x

i
 

can also be extracted with a minor adjustment to Algorithm 2.

Data Adaptive Sampling Strategy for Data Reduction

Utilizing all the N
e

 edge patterns as input, Y. Ping et al. (2019) confirmed that the final number of the 
selected SVs N

sv
 by solving Eq.(1) is actually smaller than or equal to N

e
. This indicates that the set 

of edge patterns forms a superset of SVs, and not all collected edge patterns contribute equally to data 
description in terms of maintaining data separability while avoiding overfitting. Hence, data reduction 
under an appropriate sampling strategy, such as MMRS (Rathore et al., 2019), is valuable for efficiency.

This is particularly crucial when the computational complexity of traditional edge pattern selection 
and dual problem solver is up to O(N2) and O(N3), respectively. However, retaining too few data points 
may diminish cluster density, thereby impacting data separability. Additionally, the high-dimensional 
approximate nearest neighbor search work by Gao and Long (2023) indicates that a high-dimensional data 
space requires more data points than a low-dimensional space to ensure comparable separability. 
Consequently, before conducting EPSDLA or data description, the decisions of whether to introduce a 
data sample strategy (i.e., feasibility) and how to set an appropriate sampling ratio (i.e., parameter r ) are 
crucial issues. Unfortunately, these considerations have not received sufficient attention in the literature.

Before presenting DASS for data reduction, we first give some definitions following Aslani 
and Seipel (2021), based on pdLSH in which L hash function families and each family with M hash 
functions is considered.

Definition 1 (Similarity Index): For any two data points x
i
and x

j
in  , the similarity 

index SI( , )x x
i j

is defined as the number of common buckets between them in all L hash 
function families.

Inherently, SVDD employs SVs as prototypes for both data description and cluster analysis. 
Inspired by prototype learning (Zhang et al., 2022) and the representative instance selection method 
in Guo et al. (2014), we further define a representativeness index (RI) to differentiate the clustering 
effect around a given data point.

Algorithm 2. Description of SBS-subspace
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Definition 2 (Representativeness Index): For a given data point x
i
, its representativeness index 

RI( )x
i

is defined as the number of data points x
j
around it having SI( , )x x

i j
³ 1 for j N= 1, ,

and j i¹ , i.e.:

RI SI( ) ( ( , ) )x x x
i

j

N

i j
g= −

=
∑
1

1 	 (11)

Here, g x( )  is the function employed by the third phase of SBS, which returns 1 if x ³ 0 . Clearly, 
when more data points within a cluster yield higher RI values, it implies that more data points are 
projected into the same bucket, indicating greater cluster compactness. Intuitively, the corresponding 
data set possesses better separability. Thus, we provide an intuitive definition of separability index 
(SPI) for reference analysis.

Definition 3 (Separability Index): For a data set  , its separability index SPI( ) is defined as the 
two-tuples of the mean and variance (SPI_Mean, SPI_Var) over all the data points’ RI values, 
i.e.:

SPI Mean=
1

N
RI

i=1

N

i
_ ( )å x 	 (12)

SPI Var= RI SPI Mean_ ( ) _[ ]
1

1

2

N i

N

i
=
∑ −x 	 (13)

A higher SPI_Mean generally indicates better data separability, while a smaller SPI_Var 
suggests more balanced data distribution. We anticipate a notable SPI value for a dataset, whether 
it is a subset after data sampling or not. DASS should avoid  ’s SPI being cut down too much 
because data sampling frequently leads to data sparsification, reducing the possibility of 
neighboring data points being mapped into the same bucket. Therefore, optimal data separability 
is characterized not only by a relatively high SPI value but also by a substantial proportion of 
data points exhibiting high RI values.

To assess the adequacy of a dataset for SVDD, we illustrate the bound analysis of SPI using 
Fig.3 as an example. Fig.3 consists of two clusters, C1 and C2, without any overlap. Inherited from 
SBS, EPSDLA checks each data point’s k

e
 nearest neighbor region. However, due to imbalanced 

distribution, data points at different locations often have varying neighborhood sizes, even though 
k
e
 is the same. For instance, the k

e
 nearest neighbor regions of x

1
, x

2
 and x

5
 have different radii 

r
1
, r

2
, and r

5
, respectively. Generally, r

2
 is greater than r

1
 because x

2
 is located in the interior 

region of C1, which typically has a higher density than the locations of edge patterns.
Therefore, in theory, we have RI RI( ) ( )x x

2 1
³ . From a dynamical system (3) perspective, every 

data point should converge to the center of the cluster or the decomposed convex hull to which it 
belongs (Y. Ping et al., 2012; Lee & Lee, 2006; Li & Maguire, 2011). When checking whether x

1
 

is an edge pattern, it is intuitively not expected that a distant data point x
3
 be considered because it 

could exacerbate the instability in generating the convergence direction for x
1

. Similarly, data point 
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x
4
 from another cluster C1 should be avoided when we check x

5
 since x x

5 4

� ����
 may cause an incorrect 

convergence direction of x
5
. By further considering the perspective of pdLSH, an ideal condition 

would be that all considered k
e
 nearest neighbors of x

i
 can be mapped into the same bucket. 

Unfortunately, this condition may be suitable for inner points but is not practical for edge patterns 
since an ideal edge pattern should have its k

e
 nearest neighbors located on the same side of the 

tangent plane, enlarging the bucket centered at x
i
 with the distance from the farthest data point as 

the radius. Therefore, we have r r
1 2
³  even if data points in the cluster Ci are uniformly distributed. 

Consequently, we suggest a lower bound of data separability (denoted by b
SPI

) by

b k
SPI e

=
1

2
	 (14)

where k N
e
³ 5 ln  is suggested as discussed by Li & Maguire (2011), and it can also be changed to 

any other value upon the prior knowledge related to the target data set. That means, in general, a data 
sampling strategy is suggested to be conducted only if SPI_Mean> b

SPI
.

Algorithm 3 presents the pseudocode for DASS. Utilizing pdLSH with L hash function families, 
each having M hash functions, lines 2-6 determine all L bucket IDs for every data point. For each 
data point x

i
, lines 7-16 first identify all the other data point x

j
 with SI( , )x x

i j
³ 1  by comparing 

their L bucket IDs. Once SI( , )x x
i j

³ 1 , we increase the RI value of x
i
 to indicate that at least x

i
 

can represent its neighbor x
j
 from a certain perspective. Consequently, lines 17-18 compute the SPI 

Figure 3. Bound analysis of the separability index



Journal of Cases on Information Technology
Volume 26 • Issue 1

12

two-tuple following Eqs.(12-13). For the sake of simplicity, we suggest the lower bound r
LB

 of the 
sample rate formulated by:

ρ τ
LB SPI RI

= / r 	 (15)

if SPI_Mean³ b
SPI

 and the proportion of data points with RI values greater than b
SPI

 (denoted by 
r
RI

) surpasses a predefined threshold t
SPI

. If SPI_Mean is lower than b
SPI

, it means that the number 
of data points in   is too small to form significant aggregation effect in the data space with high 
dimension d, and   has poor data separability. So, r

LB
 is set to 1 because the potential loss from 

data sampling likely outweighs the gain in this scenario.

Implementation of the Proposed IEPS
By integrating the aforementioned designs, Algorithm 4 presents the complete solution of the 
proposed IEPS.

Although k-means++ is recognized for its simplicity, it encounters challenges with large K or 
costly iterations. Additionally, not all edge patterns are essential for data description. Therefore, 
SPI_Mean’← +t

SPI
1  of line 1 ensures the execution of the subsequent while loop. With a randomly 

Algorithm 3. Description of DASS
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generated HF following Aslani and Seipel (2021), DASS is employed to suggest the minimum 
proportion r

LB¢  of data points that should be retained while ensuring data separability. If the updated 
r

LB
< 1 , line 6 invokes MMRS to sample r

LB
N  data points upon available computational resources 

and an acceptable run-time. Notice that the while loop in lines 2-9 minimizes the data points EPSDLA 
requires for efficiency. Theoretically, a higher sample rate leads to better accuracy. Therefore, a small 
value can be added to r

LB¢  in line 6 to make it closer to 1. Finally, EPSDLA is conducted for the 
global edge pattern selection in line 10. The preceding tasks contribute to the efficiency of IEPS from 
two aspects: (1) Using fewer data points as input N N

s
≤( )  supports selecting indispensable rather 

than an excessive number; (2) Since the primary goal of k-means++ is data grouping, the optimization 
of the objective function (5) is not critical. Therefore, the iteration number can be a small integer, 
such as 10.

PERFORMANCE ANALYSIS

Time Complexity
As outlined in Algorithm 4, the proposed IEPS comprises three essential tasks: DASS, MMRS, and 
EPSDLA.

The first task, DASS, assesses an appropriate sample rate r
LB

 while ensuring a requisite data 
separability. From Algorithm 3, two time-consumption phases in DASS are related to lines 2-6 and 
lines 7-16. Since they respectively consume O(NL) and O(N2) for simple computations, we record 
its time complexity as O(N2). As discussed by Rathore et al. (2019), the second critical task MMRS 
requires O(dNNg) to divide   into N

g
 groups and uniformly extract a subset 

s
 containing N

s
 

data points for the subsequent EPSDLA. Even though the double-round works are employed, in 
EPSDLA, k-means++ costs O(dKNs) to divide 

s
 into K clusters, and K-round invocations of SBS-

SubSpace thus take O(Ns
2/K) in average (i.e., O(K(Ns/K)2)) to collect the global edge patterns. Here, 

we use K to replace K1 and K2 for generality.
Although the while loop encompasses DASS and MMRS, their time complexities drop 

dramatically as the number of loops increases, and the loop count is extremely limited. The most 
time-consuming work is performed in the first round. Therefore, the time complexity of IEPS becomes 
O(N2+dNNg+ dKNs+Ns

2/K) in which O(dNNg) exists only if r
LB

< 1 . Although the most time-
consuming part DASS reaches O(N2), which may seem comparable to conducting SBS on  , the 

Algorithm 4. Description of IEPS



Journal of Cases on Information Technology
Volume 26 • Issue 1

14

elementary subtraction operation between two vectors of length L has a significant advantage over 
the ranking work for K nearest neighbors in SBS. Experimental results in the following sections will 
show the evidence.

Datasets and Experimental Settings
Derived from BEPS (Li & Maguire, 2011) and SBS (Y. Ping et al., 2019), the proposed IEPS 
incorporates three strategies that correspond to the designs of EPSDLA and DASS and the 
introduction of MMRS for efficiency improvement while ensuring the concerned ability of SVDD. 
To comprehensively evaluate the performance of IEPS, four series of experiments on various datasets 
are conducted as follows:

(1) 	 Check the validity of EPSDLA in terms of accuracy (contact ratio of edge patterns) and efficiency. 
In addition, the selection of K1 and K2 will be discussed.

(2) 	 Verify whether SPI_Mean and SPI_Var of a data set   can well reflect the state of data 
distribution from separability and balance degree.

(3) 	 Evaluate whether the suggested lower bound r
LB

 by DASS is effective when MMRS sample 
data points following that suggestion.

(4) 	 Conduct feasibility analysis of IEPS by integrating it with two typical applications of SVDD, 
i.e., FSSVC and IBSVC, in terms of clustering accuracy on several real-world data sets with 
different sizes and dimensions.

The aforementioned experiments will be conducted on typical data sets from various domains. 
To make the analysis more intuitive and visible, the first three series of experiments use two synthetic 
datasets DS3 and DS4 (Karypis et al., 1999) with noise eliminated by T. Ping et al. (2012). These 
two-dimensional data sets have 8,543 and 7,670 data points, respectively. For intuitive comparisons, 
the fourth series of experiments employs five data sets from Y. Ping et al. (2022), which are listed in 
Table 1. Here, the breast cancer dataset wisconsin and shuttle data are provided by UCI repository 
(Frank & Asuncion, 2010). 20Newsgroups is a widely used text corpora from Lang (1995) and 
processed by Y. Ping et al. (2019) following the method of DCGLI-CCE. UNIBS Anonymized 2009 
Internet Traces UNIBS-AIT (UNIBS 2010) consists of 9209 flows in four imbalance distributed 
categories, i.e., WEB (HTTP and HTTPS), MAIL (POP2, IMAP as well as their encrypted flows), 
BitTorrent, and eMule. Following the work of Guo et al. (2014), kddcup99 is a nine-dimensional 
data set extracted from KDD Cup 1999 Data,1 which was used to build a network intrusion detector.

To evaluate the accuracy of clustering, we adopt the widely used similarity metrics adjusted 
rand index (ARI) (R. Xu, et al., 2008) formulated by Eq.(16). In Eq.(16), Nij is the number of data 
points with true label I but they are assigned by j, Ni⸱ and N⸱j are the number of data points with label 
i and j, respectively:

Table 1. Description of the benchmark data sets

Data Sets
Data set Description

Size Dims # of Classes

wisconsin 683 9 2

UNIBS-AIT 9209 4 4

20Newsgroups 13998 20 20

shuttle 43500 9 7

kddcup99 494021 9 5



Journal of Cases on Information Technology
Volume 26 • Issue 1

15

ARI =

−





























∑ ∑ ⋅ ⋅N N N

ij

i j

i

i

j

2 2 2,















































∑

⋅

j

i

i

N

N

/
2

1
2 2∑∑ ∑ ∑+















−
























⋅ ⋅ ⋅N N N
j

j

i

i

j

2 2 2









































∑
j

N
/
2

	 (16)

All the algorithms are implemented using MATLAB 2021b on a mobile workstation with Intel 
I9-9880H processor and 128GB DRAM, running Windows 10-X64. To ensure fair comparisons, 
we have opted not to maximize the efficiency improvements by introducing parallel programming 
even though the internal operations of the three critical tasks of IEPS can be easily parallelized with 
parfor or parfeval methods.

Datasets and Experimental Settings
Although edge patterns are suitable for data description, following the principle of SVDD and 
discussions in Section 3.2 (Data Adaptive Sampling Strategy for Data Reduction), not all edge patterns 
are indispensable. Therefore, establishing a ground truth set of edge patterns has no practical meaning 
for data description. To perform a validity analysis of EPSDLA, we define a contact ratio (CRatio) 
formulated by Eq.(17) to represent accuracy, with edge patterns collected by the recent SBS as a 
reference. In Eq.(17), 

e-EPSDLA
and 

e-SBS
 denote sets of edge patterns separately collected by 

EPSDLA and SBS, and | |×  counts the number of data points:

Accuracy
CRatio

e-EPSDLA e-SBS

e-EPSDLA

=
∩

×
| |

| |
%

 


100 	 (17)

Figures 4a and 4b, respectively, depict edges of DS3 and DS4 collected by SBS, which is the 
equivalent to the classical BEPS due to g

u
= 1 . In comparison with the ability-proven algorithm 

SBS, the most current boundary-aware instance selection algorithm BPLSH significantly improves 
efficiency but experiences a drastic drop in accuracy. In terms of CRatio after ten rounds of executions, 
only 12 48 1 60. . %±  and 17 17 1 56. . %± data points collected are on the edges of DS3 and DS4, 
respectively. Despite the minimal impact on model training of SVM for supervised learning, these 
results cannot directly describe or discover the target data pattern in unsupervised learning due to 
the presence of too many inners. In contrast to BPLSH, the proposed EPSDLA has compromised 
runtime costs while achieving much-improved accuracy, which separately reach 98 73 0 54. . %±  and 
96 53 1 21. . %± . Compared with SBS, the actual runtime costs have been reduced by about 32 89. %  
and 32 80. %  on DS3 and DS4, respectively. Slight variances in accuracy and efficiency suggest 
EPSDLA’s stability.

The previous experiments set K
1
 and K

2
 to 3 and 5, respectively. To further understand the 

performance related to the settings of K
1
 and K

2
, we change K

1
 from 2 to 20 and let K K K

2 1
= +∆  

with DK  ranging from 1 to 9. Experimental results are depicted by Figures 5 and 6 in which the 
bubble size is magnified 10 times to represent the variance of accuracy for visualization effect.

The center of the blue ellipse denotes the mean of all the accuracies with a fixed DK . Together 
with runtime costs shown in Figures 7a and 7b, several observations are as follows:

•	 As K
1
 increases, the accuracy has a downward trend. However, the descent rate gradually 

becomes slower as DK  increases. On DS3, the mean accuracy is reduced to 97 41. %  from 
98 74. %  while a smaller interval between 97.39% and 98.05 is obtained on DS4.
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Figure 4. Edge patterns with red circles selected by SBS (Ping et al. 2019), BPLSH (Aslani & Seipel, 2021), and EPSDLA with 10 
round iterations of k-means++ under K1=3, K2=5. Both of them adopt the same parameters ke = 30, g g

l u
= =0 85 1. , . SBS 

with gu = 1  means no edge shrinked that performs the same with BEPS (Li & Maguire, 2011).
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•	 Variances of accuracies are relatively stable along with the increase of either K
1
 or DK . That 

means the instability of k-means++ has a limited impact on the collection of edge patterns.
•	 Benefited by the low complexity of k-means++, more subspaces divided from the original data 

space significantly reduce the runtime cost as K
1
 increases. However, DK  has a limited impact 

on efficiency.
•	 As an extension of the prior observation, we have added an experiment to check the relationship 

between the iterations of best-effort optimization for Eq.(5) and the final accuracy. Figure 8 
depicts the obtained accuracies concerning the increasing iteration number of k-means++. The 
solid line and shading region represent the mean and variance, respectively. Clearly, there is 
little impact on the accuracy of edge patterns collected by EPSDLA when the iteration number 
is greater than 15.

Based on these observations, choosing a smaller K
1
 is essential to balance accuracy and efficiency. 

Since the cluster number is typically unknown in applications of SVDD, such as cluster discovery 
and description, an acceptable time-consumption should be the primary reference for selecting K

1
. 

Furthermore, in the subsequent study, the maximal iteration number of k-means++ is limited to 10 
for efficiency.

Figure 5. Accuracy obtained on DS3 in terms of CRatio by EPSDLA with different K
1

 and K K K
2 1
= +∆ . The remaining 

parameters are k
e l u
= = =30 0 85 1, . ,g g .
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Figure 6. Accuracy obtained on DS4 in terms of CRatio by EPSDLA with different K
1

 and K K K
2 1
= +∆ . The remaining 

parameters are k
e l u
= = =30 0 85 1, . ,g g .

Figure 7. Runtime cost by EPSDLA with different K
1

 and K K K
2 1
= +∆ corresponding to experiments of Fig. 5 and Fig. 6.
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Relationship Between SPI and Data Separability
From the definition of clustering, a data set with good separability should exhibit large intra-cluster 
similarity and small inter-cluster similarity, making it possible to describe data patterns using fewer 
data points. Based on the discussions in Section 3.2 (Data Adaptive Sampling Strategy for Data 
Reduction), large intra-cluster similarity implies that data points in a cluster have a greater probability 
of being mapped into the same or close buckets by pdLSH than data points from different clusters. 
By fixing parameters M=100, L=30 and r = 1 throughout the proposed IEPS, as well as Algorithm 
3, Fig. 9 presents the SPI analysis on data sets sampled from DS3 and DS4 with different sample 
rates, in terms of graphical sampling results and quantized SPI two-tuples.

The SPI two-tuples of DS3 and DS4 are (70.3, 23.7) and (54.8, 21.2), respectively. Since 70.3 
is much greater than b

SPI
= 22 6.  of DS3, DASS naturally deems that data sampling is feasible. A 

similar conclusion can be drawn when we deal with DS4 for 54.8 > 22.4. Two variances 23.7 and 
21.2 indicate the existence of gaps that separate data groups (i.e., clusters) and aggravate imbalance. 
Despite the large intra-cluster similarity, the variance for the largest class with 2045 data points in 
DS3 is 13.5, whereas the value is 7.2 for the largest class with 1558 data points in DS4. Therefore, 
a small variance also implies less separability.

Following the introduction of MMRS, Figures 9a-9f and Figures 9g-9l, respectively, depict the 
sampling results on DS3 and DS4 by setting the sample rate r  to 0.8, 0.6, 0.4, 0.3, 0.2, and 0.1 in 
sequence. Apparently, the SPI two-tuples exhibit an obvious downward trend as r  decrease. For DS3 
in Figure 9e, there are four positions enclosed by dashed boxes starting to have weak connection 
characteristics while the first part of the SPI two-tuples 20.6 is smaller than b

SPI
. A similar situation 

can be observed in Figure 9j for DS4. Together with b
SPI

, the proposed SPI is a good choice to indicate 
data separability.

Figure 8. Accuracies in terms of CRatio achieved by EPSDLA on DS3 and DS4 with iteration number controlled k-means++ and 
K1=3, K2 = 5, ke = 30, g g

l u
= =0 85 1. , .
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Effectiveness Evaluation of DASS
Based on the analysis in Section 4.3 (Datasets and Experimental Settings), an ideal parameter setting 
for the sample rate r  should avoid breaking data separability. Good separability requires a large 
number of representative data points with great RI values. In this section, we conduct effectiveness 

Figure 9. SPI analysis on data sets sampled from DS3 and DS4 with different sample rates ρρ  by MMRS. The lower bounds of 
data separability following Eq.(14) are the same, i.e., 22. The SPI two-tuples of the original DS3 and DS4 depicted by Fig.4a and 
Fig.4b are (70.3, 23.7) and (54.8, 21.2), respectively.
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evaluations by setting the data independent parameter t
SPI

= 0 4.  for an expectation of at least 40% 
data points having RI b( )x ³

SPI
 and observing whether DASS can give a usable suggestion of r

LB
.

Table 2 illustrates the suggested r
LB

 and clustering results by k-means++ on each data set. 
Notice that k-means++ with DASS performs cluster analysis on the original data set using the 
extracted K centers from the sampled data following the suggested r

LB
. Based on the suggested r

LB
, 

the SPI two-tuples of the subset sampled from either DS3 or DS4 shows the preservation of data 
separability when we take Figure 9 as a reference. Compared with performances of k-means++ on 
DS3 and DS4, k-means++ with DASS achieves comparable results on their subsets. Additionally, 
as depicted by Figure 10, the runtime costs by IEPS on DS3 and DS4 can be drastically reduced to 
0 26 0 10. .± s and 0 23 0 10. .± s, respectively. However, the selected edge patterns guarantee the 
description ability for the original data patterns, confirming the effectiveness of DASS.

Clustering Performance With FSSVC and IBSVC
IEPS aims to effectively select a set of edge patterns, generally constituting a superset of SVs collected 
through model training of SVDD, such as FRSVC (Y. Ping et al., 2017) and VCC (Kim et al., 2015). 
However, as two typical variants, FRSVC and VCC cannot perform direct model training with edge 
patterns due to the absence of inner points which benefit convergence direction analysis. Among all 
the variants of SVDD, the fast and scalable SVC (FSSVC) (Y. Ping et al., 2015) and improved boundary 
SVC (IBSVC) (Y. Ping et al., 2022) are designed for direct model construction with edge patterns. 
Serving as the foundation for boundary SVC (BSVC) (Y. Ping et al., 2019), FSSVC exclusively 
conducts model training with edge patterns while IBSVC also uses the corresponding norm vectors 
(convergence directions) as an additional supplement for parameter adjustment. Since IEPS can 
readily provide the norm vector for each edge pattern by introducing an additional output in Algorithm 
2, this section combines IEPS with FSSVC (denoted by IEPS-FSSVC) and IBSVC (denoted by IEPS-
IBSVC) to evaluate the clustering performance on data sets in Table 1. Baselines models encompass 
VCC, FSSVC, FRSVC, BSVC, IBSVC, and the reformative SVC with elementary operations (RSVC-
EO) (Y. Ping et al., 2020), which is a variant of FRSVC. Benchmark results are illustrated in Table 
3, with the last row providing suggested r

LB
 values for each dataset.

Among the eight methods, VCC, IEPS-FSSVC, and IEPS-IBSVC have incorporated sampling 
strategies to enhance efficiency. Notably, two distinctions exist: (1) VCC adopts a random sampling 
strategy, while IEPS-FSSVC and IEPS-IBSVC prefer MMRS; (2) Whether to use the sampling 
strategy is mandatory and gratuitous for VCC, whereas IEPS-FSSVC and IEPS-IBSVC defer the 
judgment of DASS. Therefore, following the precedent set by Kim et al. (2015), in this study the 
sample rate for VCC is set to 0.01 for kddcup99 and 0.1 for the remaining datasets. However, DASS 
recommends no data sampling for wisconsion and 20Newsgroups due to their high dimensions coupled 
with small data sizes, with suggested r

LB
 of 0.45, 0.21, and 0.01 for UNIBS-AIT, shuttle, and 

kddcup99, respectively.

Table 2. Performance of k-means++ with/without DASS

Data Sets
K-Means++ K-Means++ With DASS

ARI r
LB

ARI

DS3 0 4303 0 0095. .± 0 4002. 0 4301 0 0090. .±

DS4 0 4357 0 0207. .± 0 4024. 0 4308 0 0209. .±



Journal of Cases on Information Technology
Volume 26 • Issue 1

22

Regarding accuracy measured by ARI, each of FSSVC, IEPS-FSSVC, RSVC-EO, IEPS-IBSVC, 
and IBSVC reaches the first rank in one instance. BSVC, RSVC-EO, and IEPS-FSSVC achieve the 
top three ranks twice, while IEPS-IBSVC attains this position three times. When compared with 
FSSVC, IEPS-FSSVC excels on four data sets, with the exception of wisconsion. Meanwhile, IEPS-
IBSVC outperforms IBSVC on four data sets except for kddcup99. To further validate the effectiveness 
of introducing IEPS, we conducted a typical nonparametric statistical test of Friedman test (Sheskin, 
2003) by setting IEPS-IBSVC as the control method. Following Garcia and Herrera (2008), the 
average ranks and unadjusted p values are illustrated in Table 4. By introducing the Bergmann-Hommel 
procedure (Bergmann & Hommel, 1988), the adjusted p-value denoted by p

Homm
 corresponding to 

each pair comparison is also obtained. Obviously, IEPS-IBSVC, IEPS-FSSVC, and BSVC reaches 

Figure 10. Edge patterns selected by IEPS with 10 round iterations of k-means++ under K1=3, K2=5, and the other parameters are 
k
e l u
= = =30 0 85 1, . ,g g

Table 3. Benchmark results on five typical data sets

Method
Wisconsin UNIBS-AIT 20Newsgroups Shuttle kddcup99

ARI Time Nc ARI Time Nc ARI Time Nc ARI Time Nc ARI Time Nc

VCC 0.8543 2.60 2 0.7455 7.94 5 0.4858 14.62 37 0.6096 11.41 14 0.7955 175.96 9

FRSVC 0.8798 0.66 2 0.8678 37.60 4 0.4927 145.81 26 0.8050 380.91 13 — — —

BSVC 0.8963 0.88 2 0.8565 8.61 4 0.4752 21.05 23 0.8843 108.55 7 0.8677 6191.20 8

RSVC-EO 0.8632 0.35 2 0.8807 9.24 4 0.6084 32.13 26 0.7337 343.46 9 0.7621 9489.38 5

FSSVC 0.9248 0.71 6 0.8815 3.23 4 0.3628 17.92 105 0.6857 86.81 33 — — —

IBSVC 0.8739 0.31 2 0.7482 2.82 5 0.5796 4.23 24 0.6929 19.89 8 0.9120 5500.93 12

IEPS-FSSVC 0.8909 0.19 2 0.8818 3.86 4 0.5805 6.09 29 0.7029 53.87 13 0.8009 3533.13 6

IEPS-IBSVC 0.8965 0.15 2 0.8370 3.77 4 0.6009 7.48 24 0.8863 56.77 6 0.8049 3526.14 4

r
LB

=1.00 r
LB

= 0.45 r
LB

= 1.00 r
LB

= 0.21 r
LB

= 0.01

Note: 1. Boldface rank 1, Bold italic rank 2, italic rank 3; — means not available or more than 10,000 seconds.
2. VCC sets sample rate to 0.001 for kddcup99 and 0.1 for the others.
3. The maximum iter. Number for the solver of FRSVC, BSVC, RSVC-EO, IBSVC and IEPS-IBSVC are set to 3.
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the top three performance. Furthermore, IEPS-IBSVC and IEPS-FSSVC respectively outperform 
IBSVC and FSSVC although they collect fewer edge patterns following the suggested r

LB
 by DASS. 

These results show the evidence of IEPS in collecting informative edge patterns. Additionally, strong 
evidence is found in the discovered cluster numbers N

c
 by IEPS-FSSVC and IEPS-IBSVC on each 

dataset, aligning closely with the actual numbers, as indicated in Table 1.
Besides VCC, in terms of efficiency, IBSVC, IEPS-FSSVC, and IEPS-IBSVC demonstrate 

significant advantages. For IBSVC, the main reason is the introduction of k-means, whereas both 
MMRS and EPSDLA contribute to IEPS-FSSVC and IEPS-IBSVC. As N  increases, experimental 
results indicate that DASS becomes the most time-consuming task. For example, DASS consumes 
40.15s and 3513.58s on shuttle and kddcup99, respectively. If we exclude the runtime costs incurred 
by DASS on shuttle and kddcup99, the remaining runtimes for IEPS-FSSVC and IEPS-IBSVC can 
be notably reduced to {13.72s, 19.55s} and {16.62s, 12.56s}, respectively.

Based on the aforementioned observations and analysis, it becomes evident that the proposed 
IEPS aligns well with the state-of-the-art variants of SVDD, considering both accuracy and efficiency 
comprehensively.

Application Discussion
From an unsupervised learning standpoint, edge patterns represent data points that are common across 
all clusters. As a superset of SVs, indispensable edge patterns can be one of the objectives for SVDD 
and an accelerator for SVC, thereby optimizing the efficacy of clustering analysis. As illustrated in 
Table 3, with IEPS, FSSVC and IBSVC perform better on works such as flow analysis (UNIBS-AIT), 
intrusion detection (kddcup99), and text clustering (20Newsgroups).

Practically, the utility of IEPS extends beyond unsupervised learning, positively impacting 
supervised learning as well. The concept of an edge as the boundary for a labeled data group 
implies that samples outside this boundary may represent novelties or abnormalities. Leveraging the 
disparity between edge patterns selected by IEPS on datasets with and without labels allows for the 
identification of risk regions, akin to the overlap depicted in Figure 1. Data points within these risk 
regions are frequently susceptible to attacks and are crucial for adversarial training (C. Chen et al. 
2023), enhancing model robustness against various attacks, e.g., backdoor injection. In addition, fast 
selecting indispensable edge patterns also proves advantageous in uncovering nearest neighbors with 
different labels. As explored by H. Xu et al. (2023), these neighboring data points and labels play a 
role in adjusting the decision boundary and generating noise to help the target model forget specific 
data points for privacy protection. Even though numerous applications related to data description can 
be found, this paper focuses on a typical clustering analysis of SVC for clarity.

Table 4. Comparison results under non-parametric statistical test

Methods Average Ranks Unadjusted p pHomm

Control Method: IEPS-IBSVC, Average Rank = 2.80

VCC 7.00 0.0067 0.0469

FSSVC 5.10 0.1376 0.5505

FRSVC 4.90 0.1752 0.6915

IBSVC 4.80 0.1967 0.6915

RSVC-EO 4.20 0.3662 0.6985

BSVC 3.80 0.5186 0.6985

IEPS-FSSVC 3.40 0.6985 0.6985
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CONCLUSION

In unsupervised learning, SVDD shows us a good demonstration of data pattern discovery and 
description with insufficient information. However, the huge computational consumption poses a 
challenge for collecting SVs through model training in feature space or obtaining a superset of SVs by 
boundary analysis in input space. We find that the whole set of boundary patterns is unnecessary for 
data pattern description, and the global neighbor analysis for informative boundary creates too much 
redundant computation. For the former, not only border can be removed from boundary analysis, but 
also MMRS is employed for data reduction. Toward a reasonable sample rate, we define SI, RI, and 
SPI and design a data-adaptive sampling strategy DASS that assesses the SPI of the target data set 
and gives the lower bound of sample rate while keeping data separability. For the latter, EPSDLA is 
presented to select edge patterns with double local analysis and output of the global edge patterns after 
an intersection operation. By integrating DASS, MMRS, and EPSDLA, IEPS is proposed to select 
as few edge patterns as possible without affecting data description ability. Extensive experiments 
confirm the effectiveness of IEPS, as well as its adaptability to clustering methods.

Edge patterns and SVs are informative data points or representative samples for data description. 
In practice, despite that the cluster number of a data set is small, excessively high dimensions pose 
a challenge as they considerably decrease the probability of mapping neighboring data points into 
the same bucket. This not only impacts the effectiveness of data representation but also amplifies the 
time consumption of DASS. Although random projections provide an alternative way of dealing with 
the downspace of   through approximate preservation of distances in probability, they also exacerbate 
the instability. To mitigate this issue, a fast and stable dimensionality reduction strategy matching 
pdLSH to improve IEPS is a further appealing work.
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